
Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

The ARKode Library – Flexible and Accurate Multiphysics Time
Integrators

Daniel Reynolds1, David Gardner2, Carol Woodward2, Jean M. Sexton3

& the SUNDIALS team
reynolds@smu.edu, gardner48@llnl.gov, woodward6@llnl.gov, jmsexton@lbl.gov

1Department of Mathematics, Southern Methodist University
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

3Center for Computational Sciences & Engineering, Lawrence Berkeley National Laboratory

7 August 2018

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/
http://faculty.smu.edu/reynolds
https://crd.lbl.gov/departments/applied-mathematics/center-for-computational-sciences-and-engineering/staff-and-postdocs/jean-sexton/
http://smu.edu/math
http://www.smu.edu
http://computation.llnl.gov/casc/
http://www.llnl.gov/
http://crd.lbl.gov/departments/applied-mathematics/center-for-computational-sciences-and-engineering/
http://www.lbl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Outline

1 Motivation

2 Current ARKode Methods (ImEx)

3 ARKode API

4 Upcoming ARKode Methods (Multirate)

5 Conclusions

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Outline

1 Motivation

2 Current ARKode Methods (ImEx)

3 ARKode API

4 Upcoming ARKode Methods (Multirate)

5 Conclusions

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Multiphysics Problems

“Multiphysics” problems typically involve a variety of interacting processes:

System of components coupled in the bulk [cosmology, combustion]

System of components coupled across interfaces [climate, tokamak fusion]

Multiphysics simulation challenges include:

Multirate processes, but too close to analytically reformulate.

Optimal solvers may exist for some pieces, but not for the whole.

Mixing of stiff/nonstiff processes, challenging legacy algorithms.

Many legacy codes utilize lowest-order time step splittings, may suffer from:

Low accuracy – typically O(h)-accurate; symmetrization/extrapolation
may improve this but at significant cost [Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ‘stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Need for Flexible & Accurate Multirate Integrators

“Multirate” methods evolve distinct problem components with their own rate-specific
time steps. Historical approaches:

Simple O(h)-accurate subcycling approaches

Interpolation to handle fast/slow coupling (typically O
(
h2
)
, sometimes O

(
h3
)
)

[Kværnø & Rentrop, 1999; . . .].

Extrapolation methods to ‘bootstrap’ accuracy for low order methods [Engstler &

Lubich, 1997; Constantinescu & Sandu, 2013; . . .].

Next-generation methods will require a variety of criteria:

High-order accuracy & stability, both within and between components

Flexible rate structure within integration, or even to dynamically identify ‘fast’ vs
‘slow’ partitioning of components

Robust temporal error estimation & adaptivity of step size(s)

Ability to apply solver optimal algorithms for individual components

Built-in support for spatial adaptivity

Enable problem-specific options, e.g. SSP or symplectic for specific components

Support for testing a variety of methods and solution algorithms

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Outline

1 Motivation

2 Current ARKode Methods (ImEx)

3 ARKode API

4 Upcoming ARKode Methods (Multirate)

5 Conclusions

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

2-Additive Runge-Kutta Methods [Ascher et al. 1997; Araújo et al. 1997; . . .]

ARKode employs an additive Runge-Kutta formulation, supporting up to two split
components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf], y(0) = y0,

M = M(t) is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

We combine two s-stage methods; denoting e.g. tEn,j = tn + cEj hn, hn = tn+1 − tn:

Mzi = Myn + hn

i−1∑
j=1

AEi,jf
E(tEn,j , zj) + hn

i∑
j=1

AIi,jf
I(tIn,j , zj), i = 1, . . . , s,

Myn+1 = Myn + hn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]
(solution)

Mỹn+1 = Myn + hn

s∑
j=1

[
b̃Ej f

E(tEn,j , zj) + b̃Ijf
I(tIn,j , zj)

]
(embedding)

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

ARK Coefficients

Two Butcher tables define the method:{
cE , AE , bE , b̃E

}
define the explicit Butcher table{

cI , AI , bI , b̃I
}

define the diagonally-implicit Butcher table

Formulation supports adaptive or fixed-step ERK, DIRK and ARK methods:

Explicit methods: AI = 0 and all IVP terms are in fE(t, y).

Implicit methods: AE = 0 and all IVP terms are in fI(t, y).

ARK methods: both tables derived in unison to satisfy inter-component
coupling conditions.

Fixed-step methods (hn = h), or user-defined hn: b̃E and b̃I need not be
defined.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Solving each stage zi, i = 1, . . . , s

Each stage is implicitly defined by solving a root-finding problem:

0 = Gi(z) ≡Mz−Myn−hn

AIi,ifI(tIn,i, z) +

i−1∑
j=1

(
AEi,jf

E(tEn,j , zj) +AIi,jf
I(tIn,j , zj)

)
if fI(t, y) is linear in y then Gi is linear, and we need only solve a single linear
system for each zi,

otherwise Gi is nonlinear, and must be must utilize an iterative nonlinear solver.

Nonlinear solver options:

Modified Newton (direct linear solvers) reuses Jacobian between multiple
stages/steps.

Inexact Newton (iterative linear solvers) sets linear tolerances to minimize linear
solver work; preconditioner reused between multiple stages/steps (if supplied).

Anderson-accelerated fixed point solver requires no linear solves; utilizes
GMRES-like acceleration over subspace of preceding iterates.

Soon (Fall 2018): User-supplied solvers may be “plugged in” via a clear,
object-oriented API.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Linear Solvers and Vector Data Structures

Linear solver options:

Direct – dense/band/sparse solvers (incl. LAPACK, KLU & SuperLU)

Krylov – GMRES, FGMRES, BiCGStab, TFQMR or PCG

support user-supplied preconditioning (left/right/both)

support residual/solution scaling for “unit-aware” stopping criteria

support “matrix-free” methods through approximation of product Jv, where
J ≡ ∂

∂y
fI(t, y)

User-supplied solvers may be “plugged in” via a clear, object-oriented API.

All solvers (except for direct linear) formulated via vector operations:

Serial, MPI, pThreads, OpenMP, PETSc, CUDA, RAJA and hypre vectors
are supplied

User-supplied data structures may be “plugged in” via a clear,
object-oriented API.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

ARKode Flexibility Enhancements

Additionally, ARKode includes enhancements for multi-physics codes, including:

Variety of built-in RK tables; supports user-supplied

Variety of built-in adaptivity functions; supports user-supplied

Variety of built-in implicit predictor algorithms

Ability to specify that problem is linearly implicit

Ability to resize data structures based on changing IVP size

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Outline

1 Motivation

2 Current ARKode Methods (ImEx)

3 ARKode API

4 Upcoming ARKode Methods (Multirate)

5 Conclusions

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

ARKode usage skeleton

1 Create vector of initial conditions values

2 Create ARKode integrator: supply initial conditions and RHS routine(s)

3 Set optional inputs: tolerances, method order, initial step size, . . .

4 Optionally create matrix, linear & nonlinear solver objects; attach to
ARKode

5 Advance solution in time (typically in a loop):
ier = ARKode(arkode mem, t out, y out, &t ret, itask);

6 Retrieve optional outputs: integrator statistics, interpolated solution
values, . . .

7 Deallocate memory for solver, solution vector and optional objects

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Vector object: y

Users can supply their own application-specific “N Vector” module underneath
any SUNDIALS package:

Content structure specifies data and information needed to create new
vectors.

Implementations of vector operations on the supplied structure.

Routines to clone vectors for use within SUNDIALS.

All parallelism resides in vector operations: dot products, norms, etc.

SUNDIALS-provided vector implementations may be used directly or as
templates for problem-specific modules.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Right-hand side function routine(s): fE(t, y) & f I(t, y)

Users must provide routine(s) to define the ODE based on their vector
structure:

int (*ARKRhsFn)(realtype t, N Vector y,

N Vector ydot, void* user data)

Where

t – the current value of the independent variable.

y – the current value of the dependent variable vector, y(t).

ydot – the output vector that forms a portion of the ODE right-hand side,
fE(t, y) + fI(t, y).

user data – “black box” pointer allowing users to pass data through
ARKode without global variables.

For a purely explicit or implicit problem, only one ARKRhsFn need be supplied
(the other should be NULL)

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Nonlinear solver object (optional): Gi(z) = 0

As of our next release, users can supply their own application-specific
“SUNNonlinearSolver” module underneath most SUNDIALS packages
(including ARKode):

Content structure stores all solver-specific data for performing the solve.

Implementations of nonlinear solver operations on the supplied structure.

These may leverage vector and linear solver APIs.

SUNDIALS-provided nonlinear solver implementations may be used
directly or as templates for application-specific solvers.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Matrix & Linear solver objects (optional)

If applicable in the nonlinear solve, users can supply an application-specific
“SUNLinearSolver” module (and associated “SUNMatrix” module)
underneath any SUNDIALS package:

Content structure stores all solver-specific data for storing the matrix or
performing the solve.

Implementations of matrix or linear solver operations on the supplied
structure.

These may leverage vector API.

SUNDIALS-provided parallel linear solver implementations may be used
directly or as templates.

No matrix objects are required when using the supplied parallel linear
solvers, but may be used with application-specific linear solver modules.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Preconditioner routines (optional; necessary for scalability)

When using SUNDIALS-provided parallel linear solvers, users should supply
their own application-specific preconditioner for scalability:

Linear system Ax = b is re-cast to an equivalent problem:(
P−1A

)
x =

(
P−1b

)
[left],(

AP−1) (Px) = b [right],(
P−1AP−1) (Px) =

(
P−1b

)
[both].

If the preconditioned matrix is ∼I, then iterations converge rapidly and
independently of problem size.

Preconditioner ‘setup’ is performed infrequently, to amortize costs of
preconditioner construction.

Preconditioenr ‘solve’ is performed repeatedly, and should be efficient.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Outline

1 Motivation

2 Current ARKode Methods (ImEx)

3 ARKode API

4 Upcoming ARKode Methods (Multirate)

5 Conclusions

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Multirate Infinitesimal Step Methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . .]

MIS/RFSMR is a highly efficient, up to O
(
h3
)

method used in numerical weather
prediction. We consider 2-rate problems in additive form,

y′(t) = f{f}(t, y) + f{s}(t, y), t ∈ [t0, tf], y(t0) = y0 ∈ Rn,

f{f}(t, y) contains the “fast” terms,

f{s}(t, y) contains the “slow” terms,

the “slow” and “fast” time scales are separated by a factor m,

y may optionally be partitioned as well, e.g. y =
[
y{f} y{s}

]ᵀ
The MIS derivation assumes:

the slow component is integrated using an explicit “outer” RK method,
To = {Ao, bo, co}, where coj ≤ coj+1, j = 1, . . . , so − 1.

the fast component is advanced between slow stages as the exact solution of a
modified ODE.

Practically, the fast solution is subcycled using an “inner” RK method (any type) with

table Ti.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

MIS Algorithm

We denote the slow stages as
{
z
{s}
j

}so
j=1

. Then a single MIS step of size h is:

Set z
{s}
1 = yn.

For j = 2, . . . , so :

Solve v′j = f{f}(t, vj) +

j−1∑
k=1

aoj,k−a
o
j−1,k

coj−c
o
j−1

f{s}
(
tn + cokh, z

{s}
k

)
,

where t ∈ [tn + coj−1h, tn + cojh], with vj(tn + coj−1h) = z
{s}
j−1.

Set z
{s}
j = vj(tn + cojh).

Solve v′ = f{f}(t, v) +
so∑
k=1

bok−a
o
so,k

1−co
so

f{s}
(
tn + cokh, z

{s}
k

)
,

where t ∈ [tn + cosoh, tn + h], with v(tn + cosoh) = z
{s}
so .

Set yn+1 = v(tn + h).

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

MIS Method Properties

MIS methods satisfy a number of desirable multirate method properties:

If both To and Ti are at least O
(
h2
)

then the MIS method is O
(
h2
)
.

If both To and Ti are at least O
(
h3
)
, and To satisfies

so∑
j=2

(
c
o
j − c

o
j−1

)
(ej + ej−1)

ᵀ
A

o
c
o
+
(
1 − c

o
so
)(1

2
+ e

ᵀ
soA

o
c
o

)
=

1

3
, (1)

then the MIS method is O
(
h3
)
.

When Ti is a subcycled version of To the method is telescopic
(may be used recursively to support n-rate problems).

Ti and To can be problem-specific Butcher tableau (SSP, symplectic, . . .).

m can be varied between steps to adapt with problem rate structure.

Highly efficient – only a single traversal of [tn, tn + h] is required to obtain
yn+1. In previous tests, we could not find a more efficient method.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Relaxed Multirate Infinitesimal Step Methods (RMIS) [Sexton & Reynolds 2018]

The RMIS algorithm is nearly identical to MIS, only changing how the fast
stages contribute to the time-evolved solution:

Set z
{s}
1 = yn.

For j = 2, . . . , so :

Solve v′j = f{f}(t, vj) +

j−1∑
k=1

aoj,k−a
o
j−1,k

coj−c
o
j−1

f{s}
(
tn + cokh, z

{s}
k

)
,

where t ∈ [tn + coj−1h, tn + cojh], with vj(tn + coj−1h) = z
{s}
j−1.

Set z
{s}
j = vj(tn + cojh).

Set yn+1 = yn + h
so∑
k=1

bok

(
f{s}

(
tn + cokh, z

{s}
k

)
+ f{f}

(
tn + cokh, z

{s}
k

))
.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

RMIS Method Properties

RMIS methods inherit properties of MIS, with minor changes:

The first stage of Ti must be explicit (but the rest can be anything).

If both To and Ti are at least O
(
h3
)

then the RMIS method is O
(
h3
)
.

If Ti is at least O
(
h3
)
, and if To is O

(
h4
)

and satisfies

v
oᵀ

A
o
c
o
=

1

12
, (2)

where

voj =

0, j = 1,

boj

(
coj − coj−1

)
+
(
coj+1 − coj−1

)∑so

k=j+1 b
o
k, 1 < j < so,

boso
(
coso − coso−1

)
, j = so,

then the RMIS method is O
(
h4
)
.

MIS can be used as an O
(
h3
)

embedding within the O
(
h4
)

RMIS method.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Outline

1 Motivation

2 Current ARKode Methods (ImEx)

3 ARKode API

4 Upcoming ARKode Methods (Multirate)

5 Conclusions

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Conclusions

ARKode’s ImEx infrastructure strives for application flexibility and algorithmic
experimentation:

Numerous built-in RK methods, support for user-supplied.

Numerous built-in solver algorithms, support for user-supplied.

Support for problem-specific simplifications (linearly implicit, etc.)

Fully supports spatial and temporal adaptivity

Limitations:

Many multiphysics applications involve more than 2 components

All ARK components utilize the same step size hn

Splittings must be user-defined; cannot be chosen automatically

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Conclusions (continued)

ARKode’s upcoming algorithms will enable high-order & stable multirate
integration without sacrificing efficiency:

O
(
h3
)

and O
(
h4
)

methods with a single traversal of time interval
[tn, tn + h].

Initial versions will assume only 2 rates, both evolved explicitly with
user-defined step size h.

Following versions will support implicit methods for fast time scale, and
automated step size (h) and multirate (m) adaptivity.

Exploring extensions to n-rates, where implicitness is confined to only the
fastest time scale, through exploiting telescopic property.

Limitations:

No current support for implicitness at the slow time scale.

Fast/slow splittings must be user-defined (not automatic).

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

Thanks & Acknowledgements

Collaborators/Students:

Carol S. Woodward [LLNL]

David J. Gardner [LLNL]

John Loffeld [LLNL]

Rujeko Chinomona [SMU, PhD]

Vu Thai Luan [SMU, postdoc]

Current Grant/Computing Support:

DOE SciDAC & ECP Programs

SMU Center for Scientific Computation

Software:

ARKode – http://faculty.smu.edu/reynolds/arkode

SUNDIALS – https://computation.llnl.gov/casc/sundials

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/
http://faculty.smu.edu/reynolds/arkode
https://computation.llnl.gov/casc/sundials

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

References

Ropp, Shadid & Ober, J. Comput. Phys., 203, 2005.

Estep et al., Comput. Meth. Appl. Mech. Eng., 196, 2007.

Kværnø & Rentrop, Preprint 99/1. Univ. Karlsruhe, 1999.

Engstler & Lubich, Appl. Numer. Math., 1997.

Constantinescu & Sandu, J. Sci. Comput., 2013.

Ascher et al., Applied Numerical Mathematics, 25, 1997.

Araújo et al., SIAM J. Numer. Anal., 34, 1997.

Knoth & Wolke, Appl. Numer. Math., 1998.

Schlegel et al., J. Comput. Appl. Math., 2009.

Sexton & Reynolds, in preparation, 2018.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Outline

6 Historical Operator Splitting Methods

7 Multiphysics Case Studies

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

First-Order Splittings

Denote Si(h, u(tn)) as a solver for the component ∂tu = fi(t, u) over a time
step tn → tn + h ≡ tn+1, with initial condition u(tn).

To evolve u(tn)→ u(tn+1), we can use different solvers at the same h,

û = S1 (h, u(tn)),

u(tn+1) = S2 (h, û),

or we may subcycle time steps for individual components,

ûj+1 = S1

(
h
m
, ûj
)
, j = 0, . . . ,m, û0 = u(tn),

u(tn+1) = S2 (h, ûm),

Unless the Si commute [i.e. S1(h, S2(h, u)) = S2(h, S1(h, u))] or the splitting
is symmetric, these methods are at best O(h) accurate
(no matter the accuracy of the individual solvers).

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Fractional Step (Strang) Splitting [Strang 1968]

“Strang splitting” attempts to achieve a higher-order method using these
separate component solvers, through manually symmetrizing the operator:

û1 = S1

(
h
2
, u(tn)

)
,

û2 = S2 (h, û1),

u(tn+1) = S1

(
h
2
, û2

)
.

This approach is O(h2) as long as each Si is O(h2).

However:

This asymptotic accuracy may not be achieved until h is very small, since
error terms are dominated by inter-process interactions
[Ropp, Shadid,& Ober 2005].

Numerical stability isn’t guaranteed even if h is stable for each component
[Estep et al., 2007].

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Operator-Splitting Issues – Accuracy [Ropp, Shadid, & Ober 2005]

Coupled systems can admit destabilizing modes not present in either
component, due to numerical resonance instabilities [Grubmüller 1991].

Brusselator Example (Reaction-Diffusion):

∂tT = 1
40
∇2T + 0.6− 3T + T 2C,

∂tC = 1
40
∇2C + 2T − T 2C,

Three solvers:

(a) Basic split: D (trap.) then R
(subcycled BDF).

(b) Strang: h
2

R, hD, h
2

R,

(c) Fully implicit trapezoidal rule,

Results:
(a) is stable but inaccurate for all tests;
(b) unusable until h is “small enough”.

The spatial discretization is based on a finite element discretization of a Galerkin formulation using a
uniform grid of 500 elements with linear basis functions. This results in a system identical to Eq. (4) but
with the u, FR, and FD replaced by their discretized representations. The discretized representations of
FR and FD incorporate contributions from the mass matrix of the transient term.

The error that we report here is the ratio of the L2 norm of the difference of the numerical solution and a
reference solution to the L2 norm of the reference solution. The reference solution is computed using two-
point Richardson extrapolation of solutions using a second-order fully-implicit method at the two smallest
values of Dt.

3. Preliminary experiments and observations

We first summarize previously reported results. Fig. 1 shows the norm of the error of the solutions at
t = 80 ! 6.7s. Results are shown for FS-DR using backward Euler for the diffusion term, Strang RDR
using trapezoidal rule for the diffusion term, and trapezoidal rule for the fully coupled system. Both FS-
DR and trapezoidal rule have good convergence for the entire range of Dt at their expected rates of con-
vergence. For Strang RDR, however, there is no convergence unless Dt is sufficiently small. For Dt small
enough, the convergence is second-order as expected and the error is almost two orders of magnitude less
than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave number oscillations have pol-
luted the solution, suggesting an instability. This is seen in Fig. 2, which plots the solution using Strang
RDR with Dt = 1.6 = 0.13s at t = 32 against a reference solution at this time. This behavior has been dis-
cussed previously in [13]. Here, we note that we need to use nearly 1000 time steps per period in order to get
acceptable accuracy and convergence. This is very restrictive, and suggests a fundamental problem in using
this method to solve this system of equations. In addition, as demonstrated in [13], these methods exhibit

10
–4

10
–3

10
–2

10
–1

10
0

10
–8

10
–6

10
–4

10
–2

10
0

∆t/τ

L 2 n
or

m
 o

f e
rr

or

FS–DR
Strang RDR
Trap. Rule

Fig. 1. Temporal convergence FS-DR, Strang RDR, and trapezoidal at t = 80 ! 6.7s (s = 12). The dotted lines are references with
first- and second-order slopes.

452 D.L. Ropp, J.N. Shadid / Journal of Computational Physics 203 (2005) 449–466

very disturbing convergence behavior when both spatial and temporal discretizations are considered. For
example, for a fixed time step, decreasing the mesh spacing can cause an increase in the error at moderate
integration times of 6.7s.

This instability was also observed in [15], in which a model of chemotaxis was studied. This paper did not
come to the attention of the authors until after the first draft of the current paper, so that model is not
examined here.

If we compare the operator forms of FS-DR and Strang RDR, we have for FS-DR

un ¼ SDtDDtun"1 ¼ SDtDDt # # # SDtDDtu0 ¼ SDtDDtð Þnu0;

while for Strang RDR we have

un ¼ SDt=2DDtSDt=2un"1 ¼ SDt=2DDtSDtDDt # # #DDtSDt=2u0 ¼ SDt=2DDt SDtDDtð Þn"1SDt=2u0:

Thus, with the exception of their starting and stopping steps, the order and frequency of the split steps
are equivalent for these two methods. We therefore heuristically conclude that any difference in stability
between the FS-DR and Strang RDR methods is due to differences in stability of the methods used for
the split steps. Since the reaction steps are all solved with the same method, we suspect that the stability
of FS-DR is due to the backward Euler method!s strong damping of high wave number modes in the dif-
fusion step. Similarly, the instability of Strang RDR may be due to the trapezoidal rule!s poor damping of
high wave number modes. Indeed, though not shown here, FS-DR is unstable if the trapezoidal rule is used
for diffusion, while Strang RDR is stable if backward Euler is used for diffusion. We analyze the FS-DR
method further in Section 4.

4. Stability of operator-splitting methods: A-stability

The definitions of stability we use here consider the linear system

du
dt

¼ k; uð0Þ ¼ u0; ð5Þ

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

x

T

0 0.5 1
0

1

2

3

4

5

6

x

C

Strang RDR, ∆t = 0.13τ
Reference Solution

Fig. 2. Solution using Strang RDR with Dt = 1.6 & 0.13s at t = 32 & 2.7s (s = 12). The reference solution at this time is also plotted.

D.L. Ropp, J.N. Shadid / Journal of Computational Physics 203 (2005) 449–466 453

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Operator Splitting Issues – Accuracy [Estep 2007]

Consider Ω = Ω1 ∪ Ω2 where the subdomains share a boundary Γ = ∂Ω1 ∩ ∂Ω2:

∂tu1 = ∇2u1, x ∈ Ω1, ∂tu2 = 1
2
∇2u2, x ∈ Ω2,

u1 = u2, ∇u1 · n = ∇u2 · n, for x ∈ Γ.

Solved using one Gauss-Seidel iteration: S1 on Ω1, then S2 on Ω2 (both trapezoidal).
Errors from not iterating to convergence, and from error transfer between subdomains.

Using adjoints, they measured these errors separately:

Parabolic Problems Coupled Through a Boundary

! !"# !"$!"% !"& !"'
!

!"!#

!"!$

!"!%

!"!&

!"!'

()*+

,-+
./
-)0
12
3.
.0
.

! !"# !"$!"% !"& !"'
!

!"#

!"$

!"%

!"&

()*+

(,
-.
/0
+,
12
,,
3,

The error arising from incomplete iteration on each step
becomes negligible as time passes

The transfer error accumulates with time and becomes the
largest source of error

Donald Estep: A Posteriori Error Analysis for Multiphysics Systems 23/65

Parabolic Problems Coupled Through a Boundary

!"# $ $"# % %"#
&'()*+,-)./(,//*0'101,//.'233

&'
()
4$ 0
/,
,'
,3

56&&708'69&/.0:'&6-;'<
=9/,>-',0?/@'29'*;-;'<

Though we use second order accurate methods for each
component, the error in the operator decomposition
approximation is only first order in space

Donald Estep: A Posteriori Error Analysis for Multiphysics Systems 24/65

Error from incomplete iteration decreased with time.

Transfer error accumulated and became dominant with time.

While each Si was O(h2), the coupled method was only O(h).

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Operator-Splitting Issues – Stability [Estep et al., 2007]

Second Reaction-Diffusion Example (split subcycling; exact solvers):

∂tu = −λu+ u2, u(0) = u0, t > 0.

Phase 1 (R): ∂tur = u2
r, ur(tn) = un, t ∈ [tn, tn+1],

Phase 2 (D): ∂tud = −λud, ud(tn) = ur(tn+1), t ∈ [tn, tn+1].

True solution, u(t) =
u0e
−λt

1 + u0
λ

(e−λt − 1)
, is well-defined ∀t if λ > u0.

Split solution, u(tn+1) =
u(tn)e−λh

1− u(tn)h
, can blow up in finite time.

Results using 50
time steps, with
varying amounts
of subcycling.

!  Example from Estep et al. (2007), ! = 2, u0 = 1
!  50 time steps, phase 1 subcycled inside phase 2

Operator splitting can destabilize multiphysics

)1)(exp(1

)exp(
)(

0,)0(,

0

0

0
2

!!+

!
=

>==+

tu
tutu

tuuuuu

"
"

"

"!

)exp(
1

))(exp()()(
)(1

)(

1

1

t
tU

UU

tttutu
ttU

Utu

k

k
k

kkRD

kk

k
R

!"
!"

=

""=

""
=

+

+

#

#

1 “R” per “D” 5 “R” per “D” 10 “R” per “D”

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Outline

6 Historical Operator Splitting Methods

7 Multiphysics Case Studies

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Tempest – non-hydrostatic 3D dynamical core for atmosphere
D.J. Gardner, J.E. Guerra, F.P. Hamon, D.R. Reynolds, P.A. Ullrich, C.S. Woodward

Adaptive O
(
∆x4

)
SEM horizontal grid

Regular Staggered FEM vertical grid

Parallelization of horizontal grid (each
task owns multiple vertical columns)

Project goals:

Examine ImEx splittings & ARK
methods for accuracy/stability

Examine solution methods for
implicit components

90°S

60°S

30°S

0°

30°N

60°N

90°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

Temperature

234 239 243 247 252 256 260 265 269

K

Baroclynic test @ 31 days (Temperature)

Provide guidance for upcoming non-hydrostatic dycore for HOMME component
of Community Atmospheric Model (CAM) and Community Earth System Model
(CESM)

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/
http://www.cesm.ucar.edu/models/atm-cam/
http://www.cesm.ucar.edu/
http://www.cesm.ucar.edu/

Historical Operator Splitting Methods Multiphysics Case Studies

The Tempest Model [Ullrich 2014]

Formulated in terms of horizontal velocities uα and uβ , vertical velocity w,
potential temperature θ, and density ρ in an arbitrary coordinate system
(α, β, ξ):

∂uα
∂t

= − ∂

∂α
(K + Φ)− θ ∂Π

∂α
+ (~η × ~u)α (3)

∂uβ
∂t

= − ∂

∂β
(K + Φ)− θ ∂Π

∂β
+ (~η × ~u)β (4)

∂w

∂t
=

(
∂ξ

∂r

)[
− ∂

∂ξ
(K + Φ)− θ ∂Π

∂ξ
+ (~η × ~u)ξ

]
(5)

∂θ

∂t
= −uα ∂θ

∂α
− uβ ∂θ

∂β
− uξ ∂θ

∂ξ
(6)

∂ρ

∂t
= − 1

J

∂

∂α
(Jρuα)− 1

J

∂

∂β

(
Jρuβ

)
− 1

J

∂

∂ξ

(
Jρuξ

)
(7)

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

ImEx Splittings

Tested a variety of ImEx splittings:

Horizontally explicit vertically implicit (implicitness relegated to decoupled
columns):

HEVI–A: implicit treatment of all vertical dynamics except vertical
advection of horizontal velocity,

HEVI–B: HEVI–A with explicit treatment of vertical velocity advection,

HEVI–C: HEVI–A with explicit treatment of thermodynamic advection

HEVI–D: HEVI–A with explicit treatment of vertical velocity and
thermodynamic advection.

More general ImEx: HEVI–A with additional implicit horizontal terms:

IMEX–A; implicit treatment of density equation,

IMEX–B: implicit treatment of density, thermodynamics, and Exner
pressure.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Tempest + ARKode

Utilized a wide variety of ARKode features:

Constructed a Tempest-specific vector data structure

Examined standard “linearly implicit” approximation

Swapped in a multitude of fixed step ARK methods:

O
(
h2
)
: ARK232 [Giraldo et al. 2013]; ARS222, ARS232 [Ascher et al. 1997];

SSP2(222), SSP2(332)a, SSP3(332), [Pareschi & Russo 2005]; SSP2(332)b
[Higueras 2006]; SSP2(332)lpm1, SSP2(332)lpm2, SSP2(332)lpum,
SSP2(332)lspum [Higueras et al. 2014]

O
(
h3
)
: ARK324 [Kennedy & Carpenter 2003]; ARS233, ARS343, ARS443

[Ascher et al. 1997]; SSP3(333) [Higueras 2009]; SSP3(433) [Pareschi & Russo

2005]

O
(
h4
)

and O
(
h5
)
: ARK436, ARK548 [Kennedy & Carpenter 2003]

Supplied communication-free column-wise banded linear solver for HEVI

Utilized Jacobian-free GMRES linear (w/ column-wise preconditioner) for
splittings with implicit horizontal components

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Tempest Results – Gravity Wave Test

Test setup:

Initially balanced atmosphere on a reduced radius Earth (1/125 in size)

Small potential temperature perturbation induces gravity waves.

One hour simulation duration.

Takeaway conclusions:

Linearly implicit approx. valid to within modeling/discretization error

Splitting stability ∝ implicitness: IMEX–B > IMEX–A > HEVI

Inclusion of horizontally explicit terms increases runtime by 25% – 60%

Most accurate: O
(
h2
)

“SSP” methods by Higueras et al. 2014; O
(
h3
)

SSP3(433) method

Most stable: O
(
h2
)

ARK232, ARS232 and SSP3(332); O
(
h3
)

ARS343

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

Tempest Results – Baroclynic Wave Test

Test setup [Ullrich et al. 2014]:

Simulates the development/propagation of a baroclinic wave

30 day simulation duration (wave develops in first 10)

Compare solution quality using the largest stable h for each method

Takeaway conclusions:

Nonlinearity becomes significant after 10 days (∼2 Newton iters.
required); linearized tests show nonphysical results at these h

Splitting stability again improves with implicitness

Most SSP methods show nonphysical vertical velocities for HEVI
splittings; others unstable except at small h

Best stability/accuracy from ARS343 and ARK324 methods

Significant stability improvement from horizontally implicit with penalty of
costlier solve; overall IMEX–A cost between HEVI–A/B and HEVI–C/D

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

ParaDiS – Parallel Dislocation Dynamics Simulator
D.J. Gardner, C. S. Woodward, D.R. Reynolds, G. Hommes, S. Aubry, A.T. Arsenlis (2015)

Modeling material strain hardening:

A dislocation is a line defect in the
regular crystal lattice structure.

Plasticity is caused by multiple
dislocation lines forming in
response to an applied
stress/strain.

ParaDiS simulates the motion,
multiplication, and interactions of
discrete dislocation lines.

Attempts to connect dislocation
physics with material strength, to
understand how material strength
changes under applied load.

Growth factor calculations in an explosively

driven Rayleigh-Taylor instability:

[Park et al., PRL, 104, 135504 (2010)]

[Barton et al., J. App. Phys., 109, 073501 (2011)]

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

The ParaDiS Model

Discretize dislocation lines as
segments terminated by nodes

!"#$%&'%(!)*%$+,$%(-".),&"/(!"0,$".,$1 !!"!#$%&'#((((((
)

!*+,-./01+.23-+24,35+,/641+7453+23

-+243,489421,3425453:;32.54,

!<,4,3-./0-30253=0,13>?-1+@.-43

941A.5,3B.63B.6/43/0-/?-01+.2,3

!>$C30253.@42>$3@060--4-

!D50@1+E4386+5

!F.@.-.8;3/A0284,340/A3,14@

!"#$%&%''#'()*+',-%.*,/(0*12'%.,&(

3$%&%)*04(#56'*-*.'7(1,8#'+(8*+',-%.*,/+(

".50-3B.6/4

>.:+-+1;3-0GH3

90146+0-3+2@?1,
".50-3E4-./+1;

"?946+/0-3+2148601.6

F.@.-.8+/0-3/A0284,

C2,4613032.54I39468431G.32.54,

Force calculations utilize local and
FMM methods

MPI + OpenMP parallelization

Fully adaptive data structure, with
topology changes at every step

Implicit integration methods for dislocation dynamics 21

Table 3. Run time (seconds) and number of time steps for 3rd through 5th order

DIRK integrators on the Frank-Read source problem using the Newton-Krylov (NK)

solver to a final time of 50 µs. Recall ✏n is the nonlinear solver convergence tolerance

from (17) and ✏l is the linear solver tolerance factor in the inexact Newton iteration.

The native ParaDiS solver took 1120s and required 6,284 time steps for the same

problem. The DIRK solvers with ✏n = 1.0 and 4 iterations took as little as 1/44 as

many steps. Several methods achieved a speedup of 95% over the native ParaDiS

solver.

✏n = 0.1 ✏n = 0.5 ✏n = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 NK I2 ✏l0.1 174 576 620 1636 178 535

DIRK3 NK I3 ✏l0.1 1396 2995 664 1676 64 208

DIRK3 NK I4 ✏l0.1 84 235 68 216 62 202

DIRK3 NK I2 ✏l0.5 670 1832 104 368 432 1289

DIRK3 NK I3 ✏l0.5 77 240 613 1788 608 1739

DIRK3 NK I4 ✏l0.5 78 242 60 188 89 270

DIRK4 NK I2 ✏l0.1 174 478 108 305 81 229

DIRK4 NK I3 ✏l0.1 96 237 80 195 72 176

DIRK4 NK I4 ✏l0.1 84 203 71 117 67 175

DIRK4 NK I2 ✏l0.5 144 421 106 308 436 1060

DIRK4 NK I3 ✏l0.5 87 231 71 187 127 227

DIRK4 NK I4 ✏l0.5 86 213 87 202 53 140

DIRK5 NK I2 ✏l0.1 202 540 136 351 113 294

DIRK5 NK I3 ✏l0.1 286 620 114 253 70 170

DIRK5 NK I4 ✏l0.1 99 215 90 213 74 161

DIRK5 NK I2 ✏l0.5 222 571 139 369 86 250

DIRK5 NK I3 ✏l0.5 1001 1868 384 575 77 185

DIRK5 NK I4 ✏l0.5 88 212 366 665 70 169

(a) Initial system state (b) System state after 3.3 µs

Figure 3. (a) The initial condition for the cold start simulations containing ⇠450

nodes forming straight line dislocations. (b) The final system state after 3.3 µs with

⇠2850 nodes.

Implicit integration methods for dislocation dynamics 26

Figure 5. Dislocation density for the cold start problem using the trapezoid

method with two nonlinear iterations, trapezoid using Anderson acceleration with four

iterations and three residual vectors, and the 3rd and 5th order DIRK integrators with

Anderson acceleration with four nonlinear iterations and three residual vectors with

nonlinear tolerance factor ✏n 1.0. The di↵erent methods show good agreement in the

density curves throughout the duration of the simulation.

(a) System state after 4.4 µs (b) System state after 6.25 µs

Figure 6. (a) The final dislocation network for the warm start test after 1.1 µs for

a final simulation time of 4.4 µs containing ⇠2920 nodes. (b) The final warm start

system state after 2.95 µs for a final time of 6.25 µs with ⇠4950 nodes.

Algorithm flow:

Nodal force calculation:

Fi(t,x) = F self
i (x) + F seg

i (x) + F ext
i (t,x)

Nodal velocity calculation (the mobility
law M is material-dependent, nonlinear):

vi(t,x) = M(Fi(t,x))

Time integration (nodal positions):

x′i = vi(t,x)

Topology changes (insert/merge nodes):

!"#$%&'%(!)*%$+,$%(-".),&"/(!"0,$".,$1 !!"!#$%&'#((((((
)

!*+,-./01+.23-+24,35+,/641+7453+23

-+243,489421,3425453:;32.54,

!<,4,3-./0-30253=0,13>?-1+@.-43

941A.5,3B.63B.6/43/0-/?-01+.2,3

!>$C30253.@42>$3@060--4-

!D50@1+E4386+5

!F.@.-.8;3/A0284,340/A3,14@

!"#$%&%''#'()*+',-%.*,/(0*12'%.,&(

3$%&%)*04(#56'*-*.'7(1,8#'+(8*+',-%.*,/+(

".50-3B.6/4

>.:+-+1;3-0GH3

90146+0-3+2@?1,
".50-3E4-./+1;

"?946+/0-3+2148601.6

F.@.-.8+/0-3/A0284,

C2,4613032.54I39468431G.32.54,

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

ParaDiS + ARKode

Utilized built-in embedded DIRK integrators:

3-stage, O
(
h3
)

SDIRK [Billington 1983]

5-stage, O
(
h4
)

SDIRK [Hairer & Wanner 2010]

7-stage (6 implicit), O
(
h5
)

ESDIRK [Kværno 2004]

Constructed a ParaDiS-specific vector data structure

“Resized” the solver and vector data structure between each time step

Utilized both matrix-free inexact Newton (w/ GMRES), and accelerated
fixed-point nonlinear solvers

Examined wide variety of implicit predictor methods

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

ParaDiS Results – Frank-Read Source

Simple test problem:

Single initial dislocation

Constant strain bends/reconnects,
creating concentric dislocations, . . .

Strain rate 1 s−1; Final time 50 µs

Comparisons (εn = 1, εl = 1
2

):

ParaDiS Trapezoid solver:
basic fixed-point (2,3 iters)
KINSOL Trapezoid solver:
AFP (2-4 iters)
DIRK, O

(
∆t3

)
→ O

(
∆t5

)
:

NK and AFP (4 iters each)

Method Steps %Speedup

Trap FP I2 6284 0.0

Trap FP I3 4990 20.0

Trap AA I2 V1 6447 -4.9

Trap AA I3 V2 2316 61.7

Trap AA I4 V3 2017 66.3

DIRK3 NK I4 270 92.1

DIRK4 NK I4 140 95.3

DIRK5 NK I4 169 93.8

DIRK3 AA I4 V3 127 97.5

DIRK4 AA I4 V3 194 95.6

DIRK5 AA I4 V3 128 96.9

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

ParaDiS Results – Target Problem (“Warm-start Test”)

“Real” problem, mid-simulation:

Body-centered-cubic crystal structure,
Ω = 4.25 µm3

Strain rate 102 s−1

3.3 µs ≤ t ≤ 4.4 µs

∼2850 initial nodes, ∼5000 final

Comparison between:

Native Trapezoid solver:
basic fixed-point (2 iters)

KINSOL Trapezoid solver:
AA (2-6 iters)

DIRK O
(
∆t3

)
solver:

AA (2-6 iters), εn = 1

Method Steps %Speedup

Trap FP I2 2267 0.0

Trap AA I4 V3 809 44.6

Trap AA I5 V4 715 45.7

Trap AA I6 V5 624 50.0

Trap AA I7 V6 568 51.9

DIRK3 AA I4 V3 116 56.2

DIRK3 AA I5 V4 124 50.5

DIRK3 AA I6 V5 123 51.6

DIRK3 AA I7 V6 129 46.5

DIRK5 AA I4 V3 118 25.0

DIRK5 AA I5 V4 105 28.0

DIRK5 AA I6 V5 104 32.3

DIRK5 AA I7 V6 105 25.0

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

ParaDiS – Conclusions

Limited differentiability of Fi(t,x) calculations
seemingly capped utility of high-order methods

Adaptive methods ultimately limited by hmax –
bound due to parallelism constraints
(neighborhoods in FMM data structure)

Lack of analytical Jacobian (or preconditioner)
hindered inexact Newton performance (Jv product
required FMM calculation at each iteration)

Pretty pictures (annealing):

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Historical Operator Splitting Methods Multiphysics Case Studies

References

Ullrich et al., Quarterly J. Royal Meteor. Soc., 140, 2014.

Giraldo et al., SIAM J. Sci. Comput., 35, 2013.

Pareschi & Russo, J. Sci. Comput., 25, 2005.

Higueras, SIAM J. Numer. Anal., 44, 2006.

Higueras et al., J. Comput. Appl. Math., 272, 2014.

Kennedy & Carpenter, Appl. Numer. Math., 44, 2003.

Higueras, J. Sci. Comput., 39, 2009.

Park et al., PRL, 104, 2010.

Barton et al., J. App. Phys., 109, 2011.

Billington, PhD Thesis, University of Manchester, 1983.

Hairer & Wanner, Solving Ordinary Differential Equations II, Springer, 2010.

Kværno, BIT Numer. Math., 44, 2004.

Gardner et al., Model. Simul. Mater. Sci. Eng., 23, 2015.

http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

	Motivation
	Multiphysics/Multirate Problems

	Current ARKode Methods (ImEx)
	Formulation
	Solution
	Flexibility Enhancements

	ARKode API
	Usage skeleton
	User-supplied routines / objects

	Upcoming ARKode Methods (Multirate)
	MIS methods
	RMIS Methods

	Conclusions
	Conclusions
	Acknowledgements

	Appendix
	Historical Operator Splitting Methods
	Multiphysics Case Studies
	Tempest
	Tempest Model
	ParaDiS
	ParaDiS Model

