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Multiphysics Problems

“Multiphysics” problems typically involve a variety of interacting processes:
@ System of components coupled in the bulk [cosmology, combustion]

@ System of components coupled across interfaces [climate, tokamak fusion]

Multiphysics simulation challenges include:
@ Multirate processes, but too close to analytically reformulate.
@ Optimal solvers may exist for some pieces, but not for the whole.

@ Mixing of stiff/nonstiff processes, challenging legacy algorithms.

Many legacy codes utilize lowest-order time step splittings, may suffer from:

o Low accuracy — typically O(h)-accurate; symmetrization /extrapolation
may improve this but at significant cost [Ropp, Shadid & Ober 2005].

@ Poor/unknown stability — even when each part utilizes a ‘stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].
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Need for Flexible & Accurate Multirate Integrators

“Multirate” methods evolve distinct problem components with their own rate-specific
time steps. Historical approaches:

@ Simple O(h)-accurate subcycling approaches

@ Interpolation to handle fast/slow coupling (typically (’)(h2), sometimes O(h?’))
[Kveerng & Rentrop, 1999; ...].

@ Extrapolation methods to ‘bootstrap’ accuracy for low order methods [Engstler &
Lubich, 1997; Constantinescu & Sandu, 2013; ...].
Next-generation methods will require a variety of criteria:

@ High-order accuracy & stability, both within and between components

Flexible rate structure within integration, or even to dynamically identify ‘fast’ vs
‘slow’ partitioning of components

Robust temporal error estimation & adaptivity of step size(s)
Ability to apply solver optimal algorithms for individual components
Built-in support for spatial adaptivity

Enable problem-specific options, e.g. SSP or symplectic for specific components

Support for testing a variety of methods and solution algorithms
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Current ARKode Methods (ImEx)
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2-Additive Runge-Kutta Methods [Ascher et al. 1997; Aradjo et al. 1997; ...

ARKode employs an additive Runge-Kutta formulation, supporting up to two split
components: explicit and implicit,

My = fE(ty)+ f1(ty), teltots], y(0)=uyo,
@ M = M(t) is any nonsingular linear operator (mass matrix, typically M = I),
o fE(t,y) contains the explicit terms,
o fI(t,y) contains the implicit terms.
We combine two s-stage methods; denoting e.g. tfj =tn + cfhn, hn =tnt1 — tn:

i—1
MZi:My"—'_h"ZAEjfE(njv +h ZA nJ’ ) i=1...,s
j=1

Myn"rl - Myn + h’ﬂ Z [bEfE( n, )7 )+ be ( n, 77Z )} (SO|UtiOI’l)
Jj=1

S
MgnH:MynJrhnZ[b]E B(tE - )+bff(m,zj)} (embedding)
j=1
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Current ARKode Methods (ImEx)
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ARK Coefficients

Two Butcher tables define the method:
° {0E7 AF pE Z;E} define the explicit Butcher table
° {cl, Al bl l;l} define the diagonally-implicit Butcher table
Formulation supports adaptive or fixed-step ERK, DIRK and ARK methods:
@ Explicit methods: A’ = 0 and all IVP terms are in f¥(¢,y).

o Implicit methods: A” = 0 and all IVP terms are in f'(¢,7).

@ ARK methods: both tables derived in unison to satisfy inter-component
coupling conditions.

o Fixed-step methods (h, = h), or user-defined h,,: b” and b’ need not be
defined.
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Solving each stage z;, i = 1,

Each stage is implicitly defined by solving a root-finding problem:

—1
OZGi(z)EszMynfhn AI n7,7 Z( n]7 )+AI f (n]fzj))

o if fI (t,y) is linear in y then G; is linear, and we need only solve a single linear
system for each z;,

@ otherwise GG; is nonlinear, and must be must utilize an iterative nonlinear solver.

Nonlinear solver options:

@ Modified Newton (direct linear solvers) reuses Jacobian between multiple
stages/steps.

@ Inexact Newton (iterative linear solvers) sets linear tolerances to minimize linear
solver work; preconditioner reused between multiple stages/steps (if supplied).

@ Anderson-accelerated fixed point solver requires no linear solves; utilizes
GMRES-like acceleration over subspace of preceding iterates.

@ Soon (Fall 2018): User-supplied solvers may be “plugged in” via a clear,

obt'cjct—oriented APL. e - u Lawrence Livermore
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Linear Solvers and Vector Data Structures

Linear solver options:
o Direct — dense/band/sparse solvers (incl. LAPACK, KLU & SuperLU)
e Krylov — GMRES, FGMRES, BiCGStab, TFQMR or PCG

e support user-supplied preconditioning (left/right/both)
e support residual/solution scaling for “unit-aware” stopping criteria
e support “matrix-free” methods through approximation of product Jv, where
J= 2t
= 5,0 (HY)

@ User-supplied solvers may be “plugged in" via a clear, object-oriented API.

All solvers (except for direct linear) formulated via vector operations:

@ Serial, MPI, pThreads, OpenMP, PETSc, CUDA, RAJA and hypre vectors
are supplied

@ User-supplied data structures may be “plugged in” via a clear,
object-oriented API.
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Current ARKode Methods (ImEx)
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ARKode Flexibility Enhancements

Additionally, ARKode includes enhancements for multi-physics codes, including:

@ Variety of built-in RK tables; supports user-supplied

Variety of built-in adaptivity functions; supports user-supplied

Variety of built-in implicit predictor algorithms

@ Ability to specify that problem is linearly implicit

Ability to resize data structures based on changing IVP size
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ARKode API
°

ARKode usage skeleton

o
2]
o
o

Create vector of initial conditions values
Create ARKode integrator: supply initial conditions and RHS routine(s)
Set optional inputs: tolerances, method order, initial step size, ...

Optionally create matrix, linear & nonlinear solver objects; attach to
ARKode

Advance solution in time (typically in a loop):
ier = ARKode(arkode mem, t_out, y_out, &t_ret, itask);

Retrieve optional outputs: integrator statistics, interpolated solution
values, ...

Deallocate memory for solver, solution vector and optional objects
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ARKode API
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Vector object: y

Users can supply their own application-specific “N_Vector”" module underneath
any SUNDIALS package:

o Content structure specifies data and information needed to create new
vectors.

@ Implementations of vector operations on the supplied structure.

@ Routines to clone vectors for use within SUNDIALS.

All parallelism resides in vector operations: dot products, norms, etc.

@ SUNDIALS-provided vector implementations may be used directly or as
templates for problem-specific modules.
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Right-hand side function routine(s): f¥(t,y) & fX(t,y)

Users must provide routine(s) to define the ODE based on their vector
structure:

int (*ARKRhsFn) (realtype t, N_Vector y,
N _Vector ydot, void* user_data)

Where
@ t — the current value of the independent variable.
@ y — the current value of the dependent variable vector, y(t).

@ ydot — the output vector that forms a portion of the ODE right-hand side,
FE@y) + f1(ty).

@ user_data — “black box" pointer allowing users to pass data through
ARKode without global variables.

For a purely explicit or implicit problem, only one ARKRhsFn need be supplied
(the other should be NULL)
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Nonlinear solver object (optional): G;(z]

As of our next release, users can supply their own application-specific
“SUNNonlinearSolver” module underneath most SUNDIALS packages
(including ARKode):

@ Content structure stores all solver-specific data for performing the solve.

@ Implementations of nonlinear solver operations on the supplied structure.

@ These may leverage vector and linear solver APls.

@ SUNDIALS-provided nonlinear solver implementations may be used
directly or as templates for application-specific solvers.
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Matrix & Linear solver objects (optional)

If applicable in the nonlinear solve, users can supply an application-specific
“SUNLinearSolver” module (and associated “SUNMatrix” module)
underneath any SUNDIALS package:

o Content structure stores all solver-specific data for storing the matrix or
performing the solve.

@ Implementations of matrix or linear solver operations on the supplied
structure.

@ These may leverage vector API.

o SUNDIALS-provided parallel linear solver implementations may be used
directly or as templates.

@ No matrix objects are required when using the supplied parallel linear
solvers, but may be used with application-specific linear solver modules.
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Preconditioner routines (optional; necessary for scalability)

When using SUNDIALS-provided parallel linear solvers, users should supply
their own application-specific preconditioner for scalability:

o Linear system Az = b is re-cast to an equivalent problem:

(P'A)z = (P'b) [left],
(AP™Y) (Pz) =b [right],
(P'AP™Y) (Pz) = (P 'b) [both].

o If the preconditioned matrix is ~ I, then iterations converge rapidly and
independently of problem size.

@ Preconditioner ‘setup’ is performed infrequently, to amortize costs of
preconditioner construction.

@ Preconditioenr ‘solve’ is performed repeatedly, and should be efficient.
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Upcoming ARKode Methods (Multirate)
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Multirate Infinitesimal Step Methods [Knoth & Wolke 1998; Schiegel et al. 200; . ..

MIS/RFSMR is a highly efficient, up to (’)(h3) method used in numerical weather
prediction. We consider 2-rate problems in additive form,

y'(t) = FI ) + F (), teltoty], y(to) =0 €R,

fUY(t,y) contains the “fast” terms,

15} (t,y) contains the “slow” terms,

@ the “slow” and “fast” time scales are separated by a factor m,
@ y may optionally be partitioned as well, e.g. y = [y{/} y{'s}]T
The MIS derivation assumes:

@ the slow component is integrated using an explicit “outer” RK method,
To = {A°,b°,c°}, where c" <c]Jrl j=1,...,8°—1

@ the fast component is advanced between slow stages as the exact solution of a
modified ODE.

Practically, the fast solution is subcycled using an “inner” RK method (any type) with
table T;.
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MIS Algorithm

We denote the slow stages as {ZJ{’}} . Then a single MIS step of size h is
j=1

Set 1t =y,

Forj=2,...,5°
Jj—1

= 05 YO Gk =% 1,k p{s} op s}

Solve v; = f (t,v])ﬂ-Zﬁf <tn+Ck:h,Zk >7

where t € [tn + ¢j_1h, tn + cjh], with v;(t, +c¢j_1h) = zj{ »
Set z{s} = v;(tn + cjh).

Solve v’ —f{f}tv —l—zbA aokf{g}(f +ckhz >,

k=1

where t € [tn + cooh, tn + h], with v(t, + cooh) —z{}

Set Ynt1 = v(tn + h).
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MIS Method Properties

MIS methods satisfy a number of desirable multirate method properties:
o If both T, and T; are at least O(h?) then the MIS method is O(h?).

e If both T, and T; are at least O(h?), and T, satisfies

0

S (e - eha) e+ T A%+ (1= ) (G eloae ) =5 @
= : 2 3

then the MIS method is O(h?).

@ When T; is a subcycled version of T, the method is telescopic
(may be used recursively to support n-rate problems).

e T; and T, can be problem-specific Butcher tableau (SSP, symplectic, ... ).
@ m can be varied between steps to adapt with problem rate structure.

Highly efficient — only a single traversal of [t,, t, + h] is required to obtain
Yn+1. In previous tests, we could not find a more efficient method.
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Relaxed Multirate Infinitesimal Step Methods (RMIS) [sexton & Reynolds 2018]

The RMIS algorithm is nearly identical to MIS, only changing how the fast
stages contribute to the time-evolved solution:

Set 21 = y,..
Forj=2,...,5°

it o,
Solve vj = f{f}(t,vj) + Z %%lk f{s}(tn + cih, Zk5}>v
: 71

where t € [tn + ¢j_1h, tn + cjh], with v;(tn + ¢j_1h) = ]{ ey
Set z{ b= 0t + cjh).

Set Yn+1 = yn + hi by (f“‘}(tn +oh, z;”) T f{f}<tn 4 Sh, z,j*})) .

k=1
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Upcoming ARKode Methods (Multirate)
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RMIS Method Properties

RMIS methods inherit properties of MIS, with minor changes:
@ The first stage of T; must be explicit (but the rest can be anything).
o If both T, and T; are at least O(h®) then the RMIS method is O(h?).

o If T} is at least O(h3), and if T, is O(h4) and satisfies

1
oT 400 = ~ 2
v c D 2)
where
0, j=1
o
0 = 308 (e s ) 4 (50— ety ) TiLy b 1< <,

b?(‘s’o—coﬂ J=s%

then the RMIS method is (9( )

© MIS can be used as an O(h ) embedding within the O(h*) RMIS method.
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Conclusions

ARKode's ImEx infrastructure strives for application flexibility and algorithmic
experimentation:

@ Numerous built-in RK methods, support for user-supplied.
@ Numerous built-in solver algorithms, support for user-supplied.
@ Support for problem-specific simplifications (linearly implicit, etc.)

o Fully supports spatial and temporal adaptivity

Limitations:
@ Many multiphysics applications involve more than 2 components
o All ARK components utilize the same step size h,

@ Splittings must be user-defined; cannot be chosen automatically
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Conclusions (continued)

ARKode's upcoming algorithms will enable high-order & stable multirate
integration without sacrificing efficiency:

e O(h?) and O(h*) methods with a single traversal of time interval
[tn,tn + h].

@ Initial versions will assume only 2 rates, both evolved explicitly with
user-defined step size h.

o Following versions will support implicit methods for fast time scale, and
automated step size (h) and multirate (m) adaptivity.

@ Exploring extensions to m-rates, where implicitness is confined to only the
fastest time scale, through exploiting telescopic property.

Limitations:

@ No current support for implicitness at the slow time scale.

e Fast/slow splittings must be user-defined (not automatic).
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Historical Operator Splitting Methods

First-Order Splittings

Denote S;(h,u(t,)) as a solver for the component d;u = f;(t,u) over a time
step tn — tn + h = tny1, with initial condition w(t,).

To evolve u(t,) — u(tn+1), we can use different solvers at the same h,

Unless the S; commute [i.e. S1(h, S2(h,u)) = S2(h, Si(h,u))] or the splitting
is symmetric, these methods are at best O(h) accurate
(no matter the accuracy of the individual solvers).
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Historical Operator Splitting Methods

Fractional Step (Strang) Splitting [Strang 1968]

“Strang splitting” attempts to achieve a higher-order method using these
separate component solvers, through manually symmetrizing the operator:

i = S1 (%, u(tn)),
iy = Sz (h, 1),
U(tnt1) = St (%7112)-

This approach is O(h?) as long as each S; is O(h?).
However:

@ This asymptotic accuracy may not be achieved until h is very small, since
error terms are dominated by inter-process interactions
[Ropp, Shadid,& Ober 2005].

@ Numerical stability isn't guaranteed even if h is stable for each component
[Estep et al., 2007].
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Historical Operator Splitting Methods

Operator-Splitting Issues — Accuracy [Ropp, Shadid, & Ober 2005]

Coupled systems can admit destabilizing modes not present in either
component, due to numerical resonance instabilities [Grubmiiller 1991].

Brusselator Example (Reaction-Diffusion): '

T = VT +0.6 — 3T + T°C, ,

8C = LV2C 42T — T%C,

v 107 ,
Three solvers: W
(a) Basic split: D (trap.) then R wlh A = Swang ron
<0~ Trap. Rule

(subcycled BDF) 10 10° 1;:/” 107" 10°

(b) Strang: %R, hD, %R,
— Reference Solution

(c) Fully implicit trapezoidal rule, a

Results:
(a) is stable but inaccurate for all tests;
(b) unusable until & is “small enough”.
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Historical Operator Splitting Methods

Operator Splitting Issues — Accuracy [Estep 2007]

Consider Q = Q1 U Q2 where the subdomains share a boundary T' = 9921 N 0QNa:
Oruy = V2u17 r € Qq, Orug = %V2u2, T € Qa,
up = ug, Vui -n =Vug - n, forz eT.

Solved using one Gauss-Seidel iteration: S7 on 1, then S3 on Q2 (both trapezoidal).
Errors from not iterating to convergence, and from error transfer between subdomains.

Using adjoints, they measured these errors separately:

0.05 0.4 5 o Fully Coupled Solution
—+— Operator Decomposition
0.04 o3
5 5 5
E 003 5 g
”8_ LZ 0.2 N\T'/_n 5
g 0.02 E 2
0.01 01 -6
0 20 0 -7
0 01 02 03 04 05 0 01 02 03 04 05 15 2 25 3 35
Time Time log(sqrt(degrees of freedom))
@ Error from incomplete iteration decreased with time.

Transfer error accumulated and became dominant with time.

) While each S; was O(h?), the coupled method was only O(h). . L
\ awrence Livermore
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Historical Operator Splitting Methods

Operator-Splitting Issues — Stability [Estep et al., 2007]

Second Reaction-Diffusion Example (split subcycling; exact solvers):
Bu = —Au+ u?, u(0) =wuo, ¢>0.
Phase 1 (R): Oiu, = uZ, Uy (tn) = Un, t € [tn,tnt1],

Phase 2 (D) &«,ud = —/\ud, Ud(tn) = va(tn+1), te [tn,tn+1].

Y
. upe . . .
True solution, w(t) = —— 77—, is well-defined V¢ if A > uo.
1450 (e —1)
—Ah
. . u(tn)e P .
Split solution, u(tn4+1) = L, can blow up in finite time.
1—u(tn)h
1 . . , 2 . . . 2 . —
1%R” per “D” 5“R” per “D” 10 “R” per “D”
08} 1 st | s i
Results using 50 £ o6k 1 B g
time steps, with 35 '_E | 1
varying amounts % 04 {1 @ &
of subcycling. |
02} 1

=)

@sSMU s
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Multiphysics Case Studies
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Tempest — non-hydrostatic 3D dynamical core for atmosphere

D.J. Gardner, J.E. Guerra, F.P. Hamon, D.R. Reynolds, P.A. Ullrich, C.S. Woodward

@ Adaptive O(Az?*) SEM horizontal grid . Temperatre
@ Regular Staggered FEM vertical grid

@ Parallelization of horizontal grid (each
task owns multiple vertical columns)

@ Project goals:

e Examine ImEx splittings & ARK
methods for accuracy/stability

[3

o Examine solution methods for Baroclynic test @ 31 days (Temperature)
implicit components

@ Provide guidance for upcoming non-hydrostatic dycore for HOMME component
of Community Atmospheric Model (CAM) and Community Earth System Model
(CESM)

MATH National Laboratory
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The Tempest Model [Ullrich 2014]

Formulated in terms of horizontal velocities u. and ug, vertical velocity w,
potential temperature 6, and density p in an arbitrary coordinate system

(e, B, 6):
8;; __aﬁ(K—k@)—eg—HJr( @), (3)
O — (5 +8) — 050+ (7 x ), @
%f ( ){_7 K+<1>)—0%12+( )5] (5)
b
% = —%% (Jpu®) — %% (7pu”) ~ ja% (puf) (7)
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ImEx Splittings

Tested a variety of ImEx splittings:

@ Horizontally explicit vertically implicit (implicitness relegated to decoupled
columns):

o HEVI-A: implicit treatment of all vertical dynamics except vertical
advection of horizontal velocity,

o HEVI-B: HEVI-A with explicit treatment of vertical velocity advection,

e HEVI-C: HEVI-A with explicit treatment of thermodynamic advection

e HEVI-D: HEVI-A with explicit treatment of vertical velocity and
thermodynamic advection.

@ More general ImEx: HEVI-A with additional implicit horizontal terms:

o IMEX-A; implicit treatment of density equation,

o IMEX-B: implicit treatment of density, thermodynamics, and Exner
pressure.

T M Lawrence Livermore
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Tempest + ARKode

Utilized a wide variety of ARKode features:

@ Constructed a Tempest-specific vector data structure
@ Examined standard “linearly implicit” approximation
@ Swapped in a multitude of fixed step ARK methods:

o O(h?): ARK232 [Giraldo et al. 2013]; ARS222, ARS232 [Ascher et al. 1997];
SSP2(222), SSP2(332)a, SSP3(332), [Pareschi & Russo 2005]; SSP2(332)b
[Higueras 2006]; SSP2(332)lpm1, SSP2(332)lpm2, SSP2(332)Ipum,
SSP2(332)Ispum [Higueras et al. 2014]

° O(h?’): ARK324 [Kennedy & Carpenter 2003]; ARS233, ARS343, ARS443
[Ascher et al. 1997]; SSP3(333) [Higueras 2009]; SSP3(433) [Pareschi & Russo
2005]

° O(h4) and O(h5); ARK436, ARK548 [Kennedy & Carpenter 2003]
@ Supplied communication-free column-wise banded linear solver for HEVI

o Utilized Jacobian-free GMRES linear (w/ column-wise preconditioner) for
splittings with implicit horizontal components

= M Lawrence Livermore
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Tempest Results — Gravity Wave Test

Test setup:

o Initially balanced atmosphere on a reduced radius Earth (1/125 in size)
o Small potential temperature perturbation induces gravity waves.

@ One hour simulation duration.
Takeaway conclusions:

@ Linearly implicit approx. valid to within modeling/discretization error

Splitting stability « implicitness: IMEX-B > IMEX-A > HEVI

Inclusion of horizontally explicit terms increases runtime by 25% — 60%

@ Most accurate: O(h*) “SSP”" methods by Higueras et al. 2014; O(R®)
SSP3(433) method

Most stable: O(h*) ARK232, ARS232 and SSP3(332); O(h*) ARS343
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Tempest Results — Baroclynic Wave Test

Test setup [Ullrich et al. 2014]:

@ Simulates the development/propagation of a baroclinic wave

@ 30 day simulation duration (wave develops in first 10)

@ Compare solution quality using the largest stable h for each method
Takeaway conclusions:

@ Nonlinearity becomes significant after 10 days (~2 Newton iters.
required); linearized tests show nonphysical results at these h

@ Splitting stability again improves with implicitness

@ Most SSP methods show nonphysical vertical velocities for HEVI
splittings; others unstable except at small h

@ Best stability/accuracy from ARS343 and ARK324 methods

o Significant stability improvement from horizontally implicit with penalty of
costlier solve; overall IMEX-A cost between HEVI-A/B and HEVI-C/D

= M Lawrence Livermore
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ParaDiS — Parallel Dislocation Dynamics Simulator

D.J. Gardner, C. S. Woodward, D.R. Reynolds, G. Hommes, S. Aubry, A.T. Arsenlis (2015)

Modeling material strain hardening; Growth factor calculations in an explosively

. .. . . driven Rayleigh-Taylor instability:
@ A dislocation is a line defect in the y & ) Y Y
With {nxterml strength No strength

regular crystal lattice structure. 45..., Ssms ; 65-3 75:3 g
@ Plasticity is caused by multiple : > > . :

dislocation lines forming in [Park et al., PRL, 104, 135504 (2010)]
response to an applied
stress/strain. 25 ;
—— multiscale
T se
@ ParaDiS simulates the motion, 20070 Shw
. e . . . = Rad dat:
multiplication, and interactions of - prec o
. . L RS o
discrete dislocation lines. =
5 10
o Attempts to connect dislocation =
physics with material strength, to 5
understand how material strength o . . ; ;
. 0 2 4 6 s 10
changes under applied load. time (ps)

e, [Barton et al., J. App. Phys., L0SHOF3RkéRR)Livermore
MATH — National Laboratory
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The ParaDiS Model

@ Discretize dislocation lines as
segments terminated by nodes

Algorithm flow:

@ Nodal force calculation:
Fit,x) = FF'(x) + F;*5(x) + FF(t, )

@ Nodal velocity calculation (the mobility

. - law M is material-dependent, nonlinear):
@ Force calculations utilize local and

FMM methods vi(t,x) = M(Fi(t,x))
L @ Time integration (nodal positions):
@ MPI 4+ OpenMP parallelization
xh = v;(t,x)

@ Fully adaptive data structure, with @ Topology changes |nsert/merge nodes):

topology changes at every step ))\ A

N = LGNS ermore
SMU MATH L= National Laboratory



http://www.smu.edu
https://fastmath-scidac.org/
http://www.llnl.gov/

Multiphysics Case Studies
0®@0000

ParaDiS 4+ ARKode

Utilized built-in embedded DIRK integrators:
o 3-stage, O(h3) SDIRK [Billington 1983]
o 5-stage, O(h*) SDIRK [Hairer & Wanner 2010]

o 7-stage (6 implicit), O(h5) ESDIRK [Kvaerno 2004]

o Constructed a ParaDiS-specific vector data structure

“Resized” the solver and vector data structure between each time step

Utilized both matrix-free inexact Newton (w/ GMRES), and accelerated
fixed-point nonlinear solvers

Examined wide variety of implicit predictor methods
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Simple test problem:
@ Single initial dislocation

@ Constant strain bends/reconnects,
creating concentric dislocations, ...

_AQQ

@ Strain rate 1 s—!; Final time 50 us
@ Comparisons (e, =1, ¢, = %)
e ParaDiS Trapezoid solver:
basic fixed-point (2,3 iters)
o KINSOL Trapezoid solver:
AFP (2-4 iters)
o DIRK, O(At3) — O(At5):
NK and AFP (4 iters each)

SMU

Method Steps % Speedup
Trap FP 12 6284 0.0
Trap FP 13 4990 20.0
Trap AA 12 V1 6447 -4.9
Trap AA I3 V2 2316 61.7
Trap AA 14 V3 2017 66.3
DIRK3 NK 14 270 92.1
DIRK4 NK 14 140 95.3
DIRK5 NK 14 169 93.8
DIRK3 AA 14 V3 127 97.5
DIRK4 AA 14 V3 194 95.6
DIRKS5 AA 14 V3 128 96.9

M
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ParaDiS Results — Target Problem (“Warm-start Test")

“Real” problem, mid-simulation:

Method Steps % Speedup
@ Body-centered-cubic crystal structure, Trap FP 12 2267 0.0
Q = 4.25 pm3
Trap AA 14 V3 809 44.6
@ Strain rate 102 s—! Trap AA 15 V4 715 45.7
033pus < t < 44 s Trap AA 16 V5 624 50.0
Trap AA I7 V6 568 51.9
@ ~ 2850 initial nodes, ~ 5000 final DIRK3 AA 14 V3 116 56.2
@ Comparison between: DIRK3 AA 15 V4 124 50.5
. . DIRK3 AA 16 V5 123 51.6
o Native Trapezoid solver: DIRK3 AA I7 V6 129 465
basic fixed-point (2 iters)
. DIRK5 AA 14 V3 118 25.0
o KINSOL Trapezoid solver:
AA (2-6 iters) DIRKS AAI5 V4 105 28.0
o DIRK O(AtB) solver: DIRKS5 AA 16 V5 104 32.3
AA (2-6 iters), e, = 1 DIRK5 AA I7 V6 105 25.0
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ParaDiS — Conclusions

Pretty pictures (annealing):

o Limited differentiability of F;(t,x) calculations
seemingly capped utility of high-order methods

o Adaptive methods ultimately limited by Amax —
bound due to parallelism constraints
(neighborhoods in FMM data structure)

@ Lack of analytical Jacobian (or preconditioner)
hindered inexact Newton performance (Jv product
required FMM calculation at each iteration)
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